Nilai lim_(x→0)⁡ tan⁡(2x^3)/(x^3+sin^3⁡ 4x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x\to 0} \ \frac{\tan(2x^3)}{x^3+\sin^3 4x} = \cdots \)

  1. 5/65
  2. 4/65
  3. 3/65
  4. 2/65
  5. 1/65

Pembahasan:

\begin{aligned} \lim_{x\to 0} \ \frac{\tan(2x^3)}{x^3+\sin^3 4x} &= \lim_{x\to 0} \ \frac{\tan(2x^3)}{x^3+\sin^3 4x} \times \frac{\frac{1}{x^3}}{\frac{1}{x^3}} \\[8pt] &= \lim_{x\to 0} \ \frac{ \frac{\tan(2x^3)}{x^3}}{1+\frac{\sin^3 4x}{x^3}} \\[8pt] &= \frac{\displaystyle \lim_{x\to 0} \ \frac{\tan(2x^3)}{x^3}}{\displaystyle \lim_{x\to 0} \ 1 + \lim_{x\to 0} \ \frac{\sin^3 4x}{x^3}} \\[8pt] &= \frac{2}{1+4^3} = \frac{2}{1+64}= \frac{2}{65} \end{aligned}

Jawaban D.